矢量图形(VG)在我们的日常生活中无处不在,在工程,建筑,设计等方面进行了广泛的应用。大多数现有方法的VG识别过程是首先将VG渲染为栅格图形(RG),然后基于行为识别。 RG格式。但是,此过程丢弃了几何结构并失去了VG的高分辨率。最近,提出了另一种类别的算法以直接从原始VG格式识别。但是它受RG渲染可以滤除的拓扑错误的影响。它不是查看一种格式,而是将VG和RG格式一起使用以避免这些缺点的好解决方案。此外,我们认为VG-TO-RG渲染过程对于有效组合VG和RG信息至关重要。通过指定有关如何将VG原语转移到RG像素的规则,渲染过程描述了VG和RG之间的相互作用和相关性。结果,我们提出了Rendnet,这是在2D和3D方案上识别的统一体系结构,该体系结构考虑VG/RG表示并通过结合VG-TO-RG栅格化过程来利用其相互作用。实验表明,Rendnet可以在各种VG数据集上的2D和3D对象识别任务上实现最新性能。
translated by 谷歌翻译
随着语言模型的不断增加,它对于保护这些模型免于泄漏私人信息变得至关重要。以前的工作试图通过培训具有不同隐私保证的基于RNN的语言模型来应对这一挑战。但是,将经典的差异隐私应用于语言模型会导致模型性能差,因为基本隐私概念过于困惑,并且为数据中所有令牌提供了不体化的保护。鉴于自然语言中的私人信息很少(例如,电子邮件的大部分可能无法携带个人身份信息),我们提出了一个新的隐私概念,选择性差异隐私,以提供严格的数据,以保证数据的敏感部分改善模型实用程序。为了实现这样一个新的概念,我们为基于RNN的语言模型开发了相应的隐私机制,即选择性DPSGD。除了语言建模外,我们还将方法应用于更具体的应用程序 - dialog系统。语言建模和对话系统建设的实验表明,与基线相比,在各种隐私攻击下,提议的保留隐私机制可以实现更好的公用事业,同时保持安全。数据和代码在https://github.com/wyshi/lm_privacy上发布,以促进未来的研究。
translated by 谷歌翻译
点云分析没有姿势前导者在真实应用中非常具有挑战性,因为点云的方向往往是未知的。在本文中,我们提出了一个全新的点集学习框架prin,即点亮旋转不变网络,专注于点云分析中的旋转不变特征提取。我们通过密度意识的自适应采样构建球形信号,以处理球形空间中的扭曲点分布。提出了球形Voxel卷积和点重新采样以提取每个点的旋转不变特征。此外,我们将Prin扩展到称为Sprin的稀疏版本,直接在稀疏点云上运行。 Prin和Sprin都可以应用于从对象分类,部分分割到3D特征匹配和标签对齐的任务。结果表明,在随机旋转点云的数据集上,Sprin比无任何数据增强的最先进方法表现出更好的性能。我们还为我们的方法提供了彻底的理论证明和分析,以实现我们的方法实现的点明智的旋转不变性。我们的代码可在https://github.com/qq456cvb/sprin上找到。
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Image Virtual try-on aims at replacing the cloth on a personal image with a garment image (in-shop clothes), which has attracted increasing attention from the multimedia and computer vision communities. Prior methods successfully preserve the character of clothing images, however, occlusion remains a pernicious effect for realistic virtual try-on. In this work, we first present a comprehensive analysis of the occlusions and categorize them into two aspects: i) Inherent-Occlusion: the ghost of the former cloth still exists in the try-on image; ii) Acquired-Occlusion: the target cloth warps to the unreasonable body part. Based on the in-depth analysis, we find that the occlusions can be simulated by a novel semantically-guided mixup module, which can generate semantic-specific occluded images that work together with the try-on images to facilitate training a de-occlusion try-on (DOC-VTON) framework. Specifically, DOC-VTON first conducts a sharpened semantic parsing on the try-on person. Aided by semantics guidance and pose prior, various complexities of texture are selectively blending with human parts in a copy-and-paste manner. Then, the Generative Module (GM) is utilized to take charge of synthesizing the final try-on image and learning to de-occlusion jointly. In comparison to the state-of-the-art methods, DOC-VTON achieves better perceptual quality by reducing occlusion effects.
translated by 谷歌翻译
Dynamic treatment regimes assign personalized treatments to patients sequentially over time based on their baseline information and time-varying covariates. In mobile health applications, these covariates are typically collected at different frequencies over a long time horizon. In this paper, we propose a deep spectral Q-learning algorithm, which integrates principal component analysis (PCA) with deep Q-learning to handle the mixed frequency data. In theory, we prove that the mean return under the estimated optimal policy converges to that under the optimal one and establish its rate of convergence. The usefulness of our proposal is further illustrated via simulations and an application to a diabetes dataset.
translated by 谷歌翻译
As natural language processing (NLP) for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques such as large-scale language models suffer from data inadequacy and biased corpus, especially for languages with insufficient resources such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation CORGI-PM, which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. Moreover, we address three challenges for automatic textual gender bias mitigation, which requires the models to detect, classify, and mitigate textual gender bias. We also conduct experiments with state-of-the-art language models to provide baselines. To our best knowledge, CORGI-PM is the first sentence-level Chinese corpus for gender bias probing and mitigation.
translated by 谷歌翻译
Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
translated by 谷歌翻译
Off-Policy evaluation (OPE) is concerned with evaluating a new target policy using offline data generated by a potentially different behavior policy. It is critical in a number of sequential decision making problems ranging from healthcare to technology industries. Most of the work in existing literature is focused on evaluating the mean outcome of a given policy, and ignores the variability of the outcome. However, in a variety of applications, criteria other than the mean may be more sensible. For example, when the reward distribution is skewed and asymmetric, quantile-based metrics are often preferred for their robustness. In this paper, we propose a doubly-robust inference procedure for quantile OPE in sequential decision making and study its asymptotic properties. In particular, we propose utilizing state-of-the-art deep conditional generative learning methods to handle parameter-dependent nuisance function estimation. We demonstrate the advantages of this proposed estimator through both simulations and a real-world dataset from a short-video platform. In particular, we find that our proposed estimator outperforms classical OPE estimators for the mean in settings with heavy-tailed reward distributions.
translated by 谷歌翻译
The ability to jointly learn from multiple modalities, such as text, audio, and visual data, is a defining feature of intelligent systems. While there have been promising advances in designing neural networks to harness multimodal data, the enormous success of data augmentation currently remains limited to single-modality tasks like image classification. Indeed, it is particularly difficult to augment each modality while preserving the overall semantic structure of the data; for example, a caption may no longer be a good description of an image after standard augmentations have been applied, such as translation. Moreover, it is challenging to specify reasonable transformations that are not tailored to a particular modality. In this paper, we introduce LeMDA, Learning Multimodal Data Augmentation, an easy-to-use method that automatically learns to jointly augment multimodal data in feature space, with no constraints on the identities of the modalities or the relationship between modalities. We show that LeMDA can (1) profoundly improve the performance of multimodal deep learning architectures, (2) apply to combinations of modalities that have not been previously considered, and (3) achieve state-of-the-art results on a wide range of applications comprised of image, text, and tabular data.
translated by 谷歌翻译